If it's not what You are looking for type in the equation solver your own equation and let us solve it.
a^2-2a=3364
We move all terms to the left:
a^2-2a-(3364)=0
a = 1; b = -2; c = -3364;
Δ = b2-4ac
Δ = -22-4·1·(-3364)
Δ = 13460
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{13460}=\sqrt{4*3365}=\sqrt{4}*\sqrt{3365}=2\sqrt{3365}$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-2\sqrt{3365}}{2*1}=\frac{2-2\sqrt{3365}}{2} $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+2\sqrt{3365}}{2*1}=\frac{2+2\sqrt{3365}}{2} $
| 3/4d=-6 | | 99+9x=98+8x | | (30+2x)(12+2x)=1288 | | -4x/3-3=-19 | | 21x+7-23x=5-8 | | (x+3)/2=(2x-1)/3 | | 35=2x+9 | | 3.84x+30.72=7.68+61.44 | | 2x+3=-5x+24 | | X^2-3n-90=0 | | 3x-2(x+10=x-20 | | a^2+2a=3364 | | 4x^2+18x+280=0 | | 3(x-2)+1=-23 | | s+7/10=3 | | -4.9t+73.5=0 | | 27+2u=91 | | 10-3x+10x=5x-5+2x+8 | | .5n+7=11 | | c+9=8c-(9+7c) | | 8n=21=-43 | | 5(x+3)+4=9 | | 36000-200x+.4(x^2)=0 | | 36000-200x+.4x^2=0 | | (3/4)p=30 | | 5b−2b+5b=16 | | Y+x+55=180 | | -33=-6r=9 | | 7y+10=6y+1 | | 90=14x+5 | | 5x+3+4=9 | | 1.2x+1=x+4 |